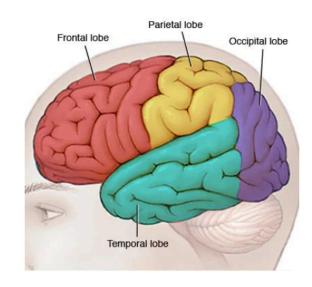


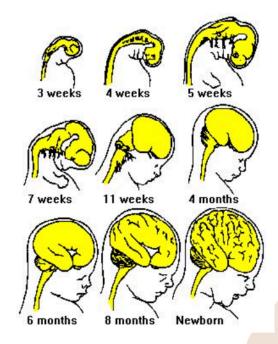
Created by: Phoebe


Edited by: Krish Shah, Prakrati Kadekar, Skyler Basco, Jed Quiaoit, Riya Patel

Simply Neuroscience

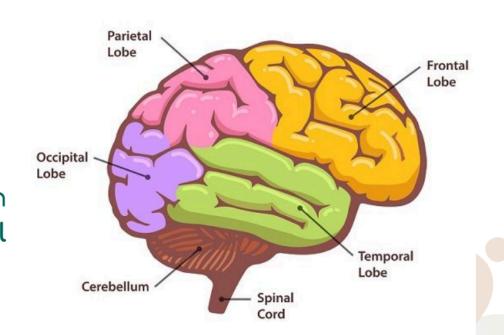
<u>Important vocab</u>

- <u>Frontal lobe</u> front of the brain; responsible for voluntary movement, expressive language, and "higher level thinking" (planning, organizing, controlling one's responses, etc.)
- <u>Temporal lobe</u> above the brainstem and cerebellum; auditory (hearing) stimuli, language, visual perception, memory, and emotion
- <u>Parietal lobe</u> upper back area of the skull; sensory information: touch, taste, and temperature
- Occipital lobe rear part of the upper brain; aspects of vision: distance, perception, movement, face recognition, and more


Source: Mayo Clinic

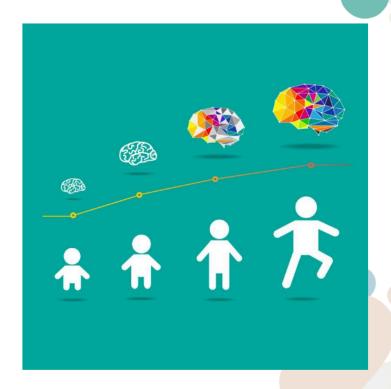
- Synaptic pruning a natural process that occurs in early childhood and adulthood by which connections in the brain that are no longer needed are removed
- Occurs mostly in the **frontal lobe**, while synaptic growth spurts predominantly take place in the **temporal** and **parietal lobes**.
- A 3-year-old child possesses twice as many synaptic connections as an adult.
- By 10 years of age, we have nearly 500 trillion synapses, which is roughly the average amount of an adult
 - o Between the ages of 2 and 10, synaptic pruning occurs very quickly

<u>Infancy</u>


- At 5-months gestation, 80 billion neurons would have been created to help form the adult cortex.
- By infancy, that number reaches approximately 100 billion.

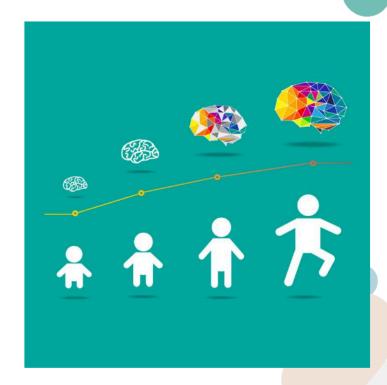
Source: University of Washington

<u>Infancy</u>


- Rapid growth begins to occur throughout the entire brain, with the exception of the frontal lobe.
- Progression is noted within the occipital and temporal lobes, while the sensory areas within the parietal lobe start to mature.

Source: Tutorialspoint

Early Childhood


- 90% of a child's brain development occurs before the age of 5.
- The first 3 years see the most rapid changes due to a bombardment of new life experiences.
- At this time, the brain is the most flexible and prepared to learn.
 - Languages are most easily acquired during this time period.

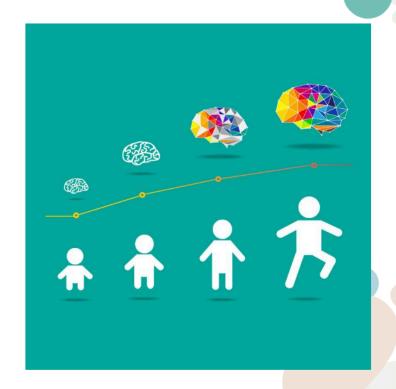
Source: SharpBrains

Early Childhood

- Brain development proceeds at an uneven pace between 3 and 10 months and 15 and 24 months of age.
- By 6 months old, the brain doubles in weight, while the neuron count remains constant following birth.
- Between 6 and 8-years-old, the development of the frontal lobe and the sensory and motor areas are the primary sites for growth.

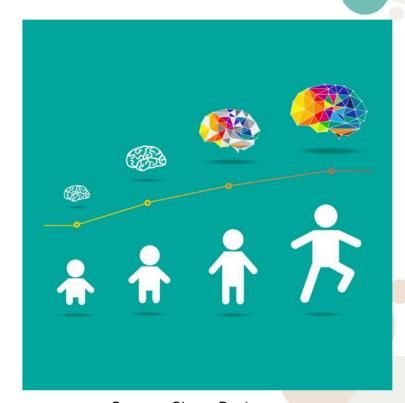
Source: SharpBrains

Middle Childhood

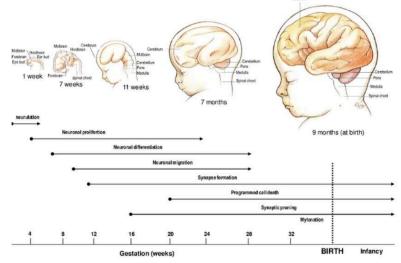

- 4 years old the brain increases to 80% of adult size. In the temporal lobe, auditory myelination is complete.
- <u>5 years old</u> the **occipital lobe** reaches adult levels.
- <u>6-7 years old</u> maturation of the occipital lobe.
- <u>8 years old</u> maturation of the temporal lobe.
- Brain is flexible for future learning.

Source: SharpBrains

Middle Childhood

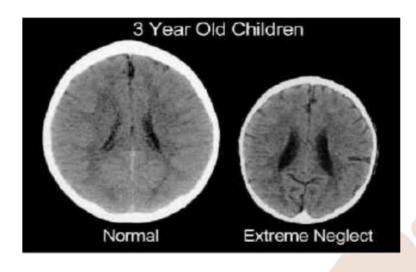

- 95% of brain growth is reached by age 5.
- Brain growth is characterised by interrelated processes such as cell proliferation and cell pruning.
 - Cell proliferation refers to the overproduction of neurons, while cell pruning is the elimination of extra synapses. (The latter is a continuous process in the childhood phase.)

Source: SharpBrains


<u>Adolescence</u>

- There are two major brain spurts
 - Between ages 13 and 15.
- During the first spurt, the cerebral cortex thickens and neuronal pathways become more efficient.
- In the second spurt, the **frontal lobes** of the cerebral cortex are the focus of development.

Overview of Brain Development


- There are two major brain spurts
 - Between ages 13 and 15.
- During the first spurt, the cerebral cortex thickens and neuronal pathways become more efficient.
- In the second spurt, the frontal lobes of the cerebral cortex are the focus of development.

Source: ResearchGate

Effects of Neglect and/or Abuse

- The frontal lobe develops improperly when deprived of affection and positive emotional experiences.
- Lack of experience can cause the neurons in the brain to die off

Source: New York Post

We hope you enjoyed the workshop!

Any questions?
You can email us at
krish@simplyneuroscience.org,
erin@simplyneuroscience.org,
pavan@simplyneuroscience.org