

Created by: Skyler Basco

Edited by: Skyler Basco, Jed Quiaoit, Riya Patel


Simply Neuroscience

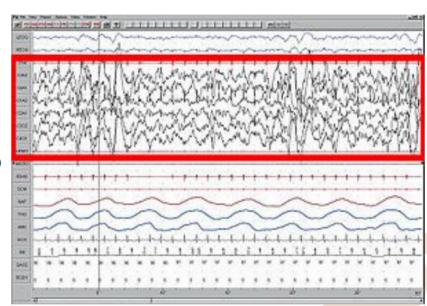
The Importance of Sleep

<u>Sleep:</u>

- Most individuals sleep for a third of their life
- Brains are active during sleep
 - Important for brain health and establishing memories
- Sleep deprivation decreases focus and can impair driving abilities
 - Long term risks: development of health issues
 - Ex: Diabetes, Stress, Obesity, Anxiety

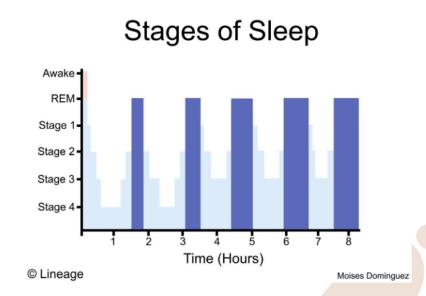
Brain Activity During Sleep

Electroencephalography (EEG):


- Electrodes bound to the scalp record cortical nerve cells' electrical activity
- Ions move in and out of cell when a neuron is active
 - EEG detects this new electrical charge
- "Brain waves" are the rise and fall of brain activity in cycles
 - These help indicate brain function

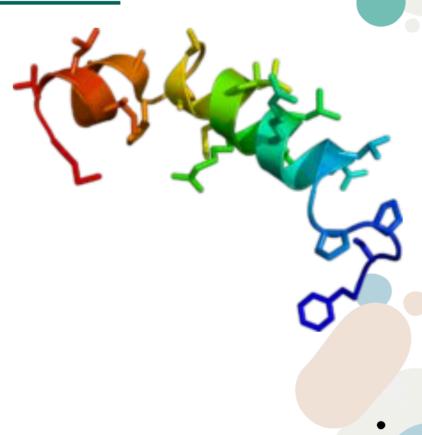
Brain Activity During Sleep

Slow wave sleep (SWS):


- Has high amplitude and low frequency brain waves
- Shows that a lot of cortical neurons switch activity from a depolarized state (more excited) to a hyperpolarized state (less excited)
- The longer you stay awake, the greater the number of slow waves

Brain Activity During Sleep

REM Sleep:


- Rapid eye movements during sleep
- Lower amplitudes than SWS slow waves in EEG recordings
 - Less synchronized neuron activity
- Causes atonia: loss of muscle tone when body is temporarily paralyzed
- Motor cortex neurons fire at the same fast pace while sleep and walking

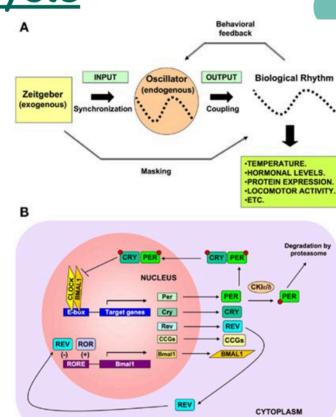
Sleep Regulation

<u> Orexin-producing neurons:</u>

- Sends projections to...
 - Brainstem and spinal cord, thalamus and basal ganglia, forebrain, amygdala
- Orexins increase metabolic rates
 - Activated by insulin-induced low blood sugar
- Loss of these neurons causes narcolepsy
- Connects hypothalamic neurons to histamine, which helps one stay awake

Sleep Regulation

Balance of neurotransmitters:


- REM: norepinephrine is low, acetylcholine is high
 - Dreaming occurs because the thalamus and neocortex are activated
- Forebrain is excited by REM sleep generator's signals
 - o Causes rapid eye movement
- VLPO in the hypothalamus causes active suppression of brain systems that keep us awake
 - Damage of VLPO (ventrolateral preoptic nucleus) causes permanent insomnia

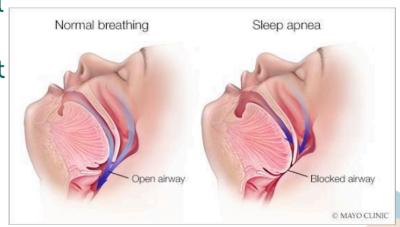
Sleep-Wake Cycle

<u>Circadian timing system:</u>

- Regulated by suprachiasmatic nucleus (nerve cells in hypothalamus)
- Cells express "clock proteins"
 - Establishes daily activity cycles, sleep, hormonal releases, etc
- Suprachiasmatic nucleus sends signals to different parts of the brain
 - Later contacts the VLPO and orexin neurons, regulating arousal

Sleep Wake Cycle

Homeostatic System:


- Adenosine levels are heightened when one stays awake for too long
- In specific centers, they bind to receptors in nerve cells
 - Slows activity and decreases arousal
 - Increases number of slow waves during SWS
- Caffeine is a stimulant
 - Binds to adenosine receptors and blocks them from interacting with adenosine

Sleep disorders

<u>Sleep apnea:</u>

- Airway muscles in throat relax until it collapses during sleep
- Causes difficulty breathing without entering SWS stages
- Causes high blood pressure and increases risk of heart attack
- CPAP: airway pressure machine
 - Helps keep airway open during sleep

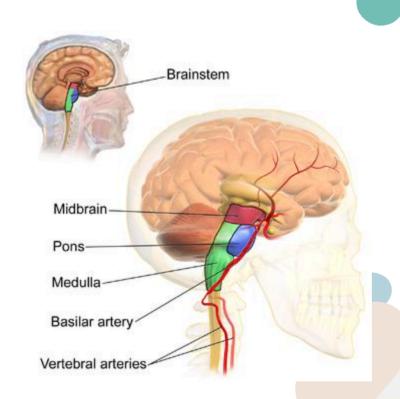
Sleep disorders

REM sleep behavior disorder:

- Malfunction of nerve pathways that prevent muscle movement
- Common in people with neurodegenerative diseases
 - Parkinson's, stroke, other types of dementia
- Can be treated with Clonazepam: amplifies inhibitory neurotransmitter GABA effects

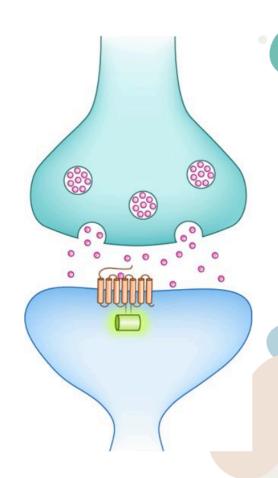
Narcolepsy: Example of Sleep Disorder Research

Narcolepsy:


- Having sleep attacks during the day
 - Is dangerous while driving
- Due to loss of orexin neurons in the lateral hypothalamus
- Hypnagogic hallucination
 - Can enter REM sleep and dream, while still being partially awake
- Can have cataplexy
 - Paralysis attacks that causes loss of muscle tone

Arousal

<u> Arousal:</u>


- Involves body and brain alterations that motivate a person to complete an action
- Important for reproduction and avoiding dangerous situations
- Level varies from low to high
 - Arousal is below a certain level, one can sleep
 - Arousal is above a certain level due to factors such as anxiety, one stays awake

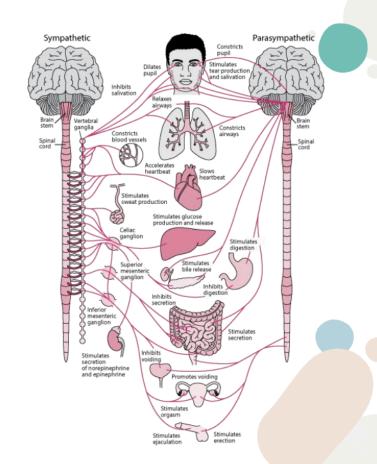
<u>Arousal</u>

Neurotransmitters:

- Released by specific types of neurons in specific brain regions for arousal
- Dopamine = movement
- Norepinephrine = alertness
- Serotonin = emotion
- Acetylcholine and histamine: increases arousal in the body

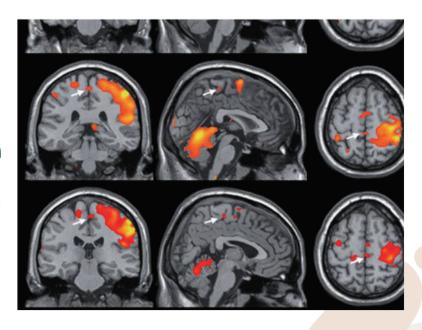
Arousal

Sensory Input:


- External signal that stimulates arousal
- Sorted in a region of the brain called the thalamus
- Receives and processes sensory inputs from regions of the brain
 - Essential to senses such as vision and hearing
 - Important for relaying inputs to the cortex

<u>Arousal</u>

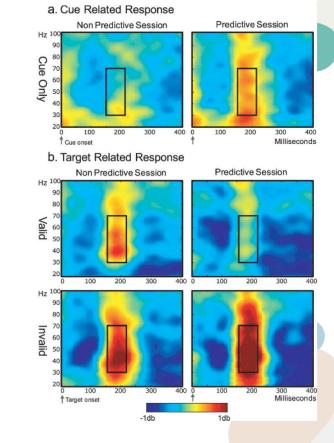
<u> Autonomic Nervous System:</u>


- Controlled by the reticular activating system
 - Regulates signals from neurotransmitters to cause a series of responses in the body
- Located in the brainstem
- Impacts heart rate, blood flow, and breathing
- Transports important substances like oxygen and nutrients

Sexual Arousal

Estrogen and testosterone:

- Hormones that activate neurotransmitter-releasing neurons
 - The same neurotransmitters as those involved in general arousal
- Brain regions contain many estrogen and progesterone receptors
 - Includes the hypothalamus, amygdala, and hippocampus
 - Includes brain regions that regulate rewarding feelings and sexual behaviors


Focus

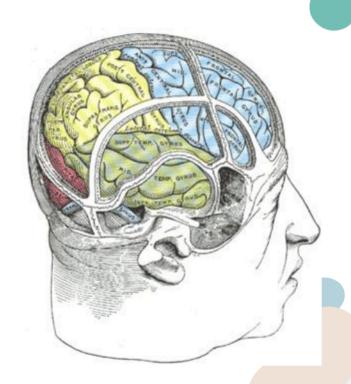
Voluntary attention (endogenous):

- Frontal and parietal cortex are active
- Happens when you choose to focus on a specific object or location

Involuntary attention (exogenous):

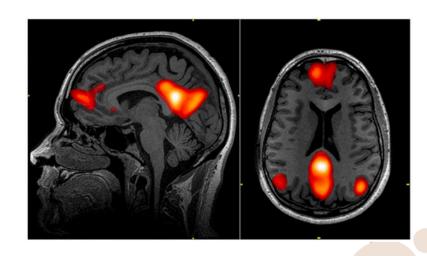
- Happens when one's attention is caught by the environment
- Can be a distraction/random stimuli
 - Processed by the ventral frontoparietal network

Disorders of Attention


- Schizophrenia: inability to control selective attention
- <u>Prosopagnosia</u>: face blindness, being unable to recognize faces
 - o Can be a result of genetic factors
- Other disorders include hyperactivity disorder (ADHD) and ADD

Disorders of Attention

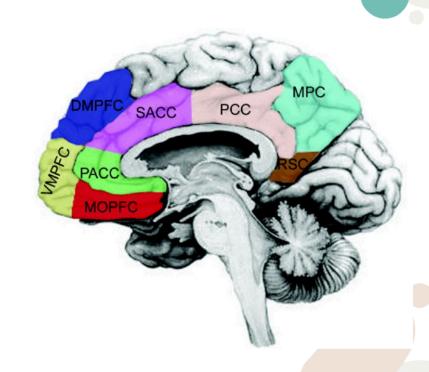
Hemineglect syndrome:


- Right parietal cortex (aids perception and attention) is damaged
 - Harms involuntary attention abilities
- Usually experienced immediately after a stroke
- Left side of the visual field is ignored
 - In addition to the left side of the body & objects
- Helps us understand rehabilitation after stroke

Rest: Default Mode Network

Default Mode Network:

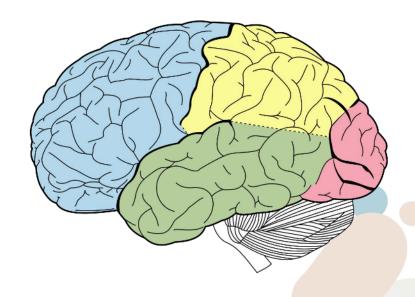
- Activity decreases when doing a demanding task
- fMRI and PET (human imaging techniques) identify which brain regions are in default mode network
 - Involved in emotion, personality, introspection, and memory
- Includes frontal brain regions, posterior cingulate cortex, lateral parietal cortex, and precuneus


Rest: Default Mode Network

Dorsomedial PFC:

- Involved in introspective thoughts
- Increases when one is resting and daydreaming
- Involved in thoughts about the past, present and future self

Ventromedial PFC:


 Involved in the level of anxiety of a subject, when performing a task

Rest: Default Mode Network

Posterior brain regions:

- Includes posterior cingulate cortex, lateral parietal cortex, precuneus
- Activates when remembering memories from past experiences
- Brain regions connected with hippocampus
 - Important for learning and forming memories

We hope you enjoyed the workshop!

Any questions?

You can email us at jed@simplyneuroscience.org, riya@simplyneuroscience.org